REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing dala sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. and to the Office of Managemenit and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
22 May 2002

3. REPORT TYPE AND DATES COVERED
Final 29 Sep 2000 - 31 Mar 2002

4. TITLE AND SUBTITLE

Basic Skills Trainer Simulation Improvements

5. FUNDING NUMBERS

6. AUTHORS

Stephen J. Dow

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

The University of Alabama in Huntsville

Huntsville, AL 35899

8. PERFORMING ORGANIZATION
REPORT NUMBER

5-21171

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Aviation & Missile Command

Redstone Arsenal, AL 35898

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The set of SED Basic Skills Trainers use common software for moving 3D target models over a background terrain. This report documents
several improvements made to that software to provide greater realism, specifically antialiasing to smooth the borders between target and
terrain, target hazing to better color-correct the targets based on their range, and improvements to the target orientation interpolation to

provide smooth turns.

20020716 086

14. SUBJECT TERMS
Target rendering, antialiasing

15. NUMBER OF PAGES
5

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

Computer Generated

STANDARD FORM 298 (Rev 2-89)

Prescribed by ANSI Std 239-18

288-102




Basic Skills Trainer Simulation Improvements

Stephen J. Dow
Department of Mathematical Sciences
The University of Alabama in Huntsville

May 22, 2002
Final Report

F/DOD/ARMY/AMCOM/Basic Skills Trainer Simulation Improvements
DAAHO01-97-D-R005 D.O. 29

Period of Performance: 9/29/00 to 3/31/02

1. Introduction

The set of SED Basic Skills Trainers use common software for moving 3D target models over a
background terrain. This report documents several specific improvements made to that software to provide greater
realism. Section 2 document procedures added to the target rendering system to smooth the border between target
and terrain and adjust target color as a function of range. Section 3 documents procedures added to improve the way

targets move by smoothing their turns.

2. Target Antialiasing and Hazing

To explain the improvements in the target rendering it will be helpful to begin with a brief overview of the
system used to render targets and combine them into a terrain scene. Each target is associated with a target model,
which is the data structure containing vertices and polygonal faces describing the geometry, together with texture
files, and color information and/or texture coordinates which determine what is drawn within each face. The target
model is stored on disk as a VRML file, which is read into memory, along with the associated texture files, at
initialization. In addition each target is associated with a path, which determines the position and orientation of the
target at any given time during the simulation. Figure 1 illustrates the portion of the simulation display path dealing
with the display of targets; the following three steps are labeled in the diagram:

1) A target model is rendered into the common rendering buffer;

2) The contents of the rendering buffer are transferred to a buffer specific to the target;

3) The rendered target buffers are combined with terrain imagery to produce a portion of the displayed scene.
The rendering (step 1) is accomplished using Direct3D. A Direct3D rendering buffer in video memory is set up at
initialization as the intermediate location into which all targets are rendered. During an iteration of the main
simulation loop, the current position and orientation of each target is updated, and expressed in the form of a 4 x 4

matrix defining the transformation from local target coordinates to terrain image coordinates. This transformation is




applied to each of the target vertices to produce a bounding box for the rendered target, consisting of a bounding
rectangle, named rcurx, in terrain image coordinates together with bounds for the transformed z-coordinates,
called zmin and zmax. If rcurr intersects the terrain rectangle currently being viewed (i.e. the target is in the
gunner’s field-of-view), and the target has undergone some change since it was last rendered, then the target is
rendered anew. The transformation matrix is adjusted so that the upper left corner of rcurr will land at the upper
left corner of the rendering buffer. The rendering buffer is filled with a special background color not expected to
occur within the target. The target vertices are then transformed and passed , along with color and texture

information, to the Direct3D rendering procedure.

Terrain Image Buffer Target Geometry Texture Buffers

LLLLLRY
ALELTELN

@ Rendeting Buffer

-

Rendered Target Buffers

Scene Buffer *

K

SR

Figure 1: Target Rendering Process

Step 2 of the process simply copies the newly rendered target from the rendering buffer to the target buffer,
making the rendering buffer available for use in rendering the next target. After this step the target buffer contains
the special background color at each nontarget pixel, and some other color at each target pixel; also the upper left
corner of rcurr indicates where in the terrain image the rendered target belongs, and a range value has been stored
for the target. After step 2 is completed for all targets, Step 3 begins by filling the scene buffer with terrain pixels,
and extracting a corresponding buffer of range values from the full range image. Then, stepping through the list of

targets in the field-of-view, and stepping through each pixel in the corresponding rcurr, the pixel is copied from




the target buffer to the scene buffer, and the range buffer updated at that pixel, if the pixel is a target pixel (not the
background color) and the target range is smaller than the current range at that pixel (target is not occluded).

The procedure just described was the one used in the initial versions of the BST software. It is based on
specifying each pixel as completely target or terrain. The effect, especially for small targets consisting of only a few
pixels, is a noticeable jagged edge along the target/terrain boundary. As the target moves, this boundary often
proceeds in a “walking” fashion; for example if the target is approximately three pixels high and is moving mostly
horizontally, one may see the bottom row of pixels shift one pixel sideways first, then the middle row shift to join
the bottom row, then the top row shift to join the other two, then the bottom row proceed again, etc.

Antialiasing is a standard procedure for reducing this jagged boundary effect. We have implémented it as
follows. After computing rcurr as described above, we compute an integer scale factor s based on the ratio of the
size of the rendering buffer to the size of rcurr. The transformation matrix is scaled by s, causing the rendered
target to be magnified. In this magnified image of the target, each block of s x s pixels corresponds to a single
pixel in the unmagnified target. The magnified target image is read from the rendering buffer into a temporary
buffer, and is a 24-bit RGB image. As before, nontarget pixels in that image are identifiable as those with the
special background color. In transferring this image to the target buffer, we scale it back down and in the process
convert it to 32-bit RGBA (red, green, blue, alpha) format. Each pixel in the new image is computed from its
corresponding s x s block in the magnified image, as follows. The R, G, and B values are computed as the
éverage of the corresponding values of the target pixels inthe s x s block (if there are no target pixels, we assign
each component a value of 0). The alpha value is computed as A =255 * count/ (s * s), where count is the
number of target pixels in the block. Thus A = 0 corresponds to a completely background pixel, A =255to a
completely target pixel, and values between to partially target pixels.

Step 3 in the diagram is modified to incorporate antialiasing by blending the target and terrain pixel values
according to the alpha values. Thus if a target pixel passes the occlusion test (target range less than range at that
pixel in the range buffer), then the scene pixel is computed as

R = (A * Rl + (255 - A) * R2)/255

G = (A * Gl + (255 - A) * G2)/255

B = (A * Bl + (255 - A) * B2)/255
where (R1, G1, B, A) is the value found in the target buffer, and (R2, G2, B2) the value previously in the scene
buffer at that pixel.

The other improvement made to the display of targets is called target hazing. Following Step 2, target
hazing is applied to the image stored in the target buffer. It uses the same algorithm that is applied to the whole
scene to simulate fog, but is applied in addition to any other such weather effect. The algorithm consists of
replacing a given pixel with a weighted average of its color value and a fog/haze color value

cnew = (1 - w) * c old + w * c_fog
The weight factor w is range dependent, but since the whole target is regarding as being at a single range, w is
constant for each target. The range dependence is formulated in terms of range values r0 and r1, and a maximum

weight factor wmax. Forr < r0,w = 0 (no fogging). Forr > rl,w = wmax (maximum fogging). For




values of r between r0 and r1, w is computed by linear interpolation. Having computed w, a lookup table is
computed and used to apply the weighted averaging in the equation above to the target pixels in the target buffer.

The alpha values in the target buffer are left unchanged in this process.

3. Smooth Target Turns

This section documents the method by which target orientation is calculated as a target moves along its
path; the method having been improved from the first versions of the software. Each target is associated with a
target path consisting of a sequence of locations (vertices) in ground coordinates for a target to follow.. Targets and
their paths are designated as ground or aerial. For a ground path, all locations where the path crosses an edge of the
ground triangulation are included as vertices. The portion of a path between consecutive vertices is called a path
segment. A time is given in the path file for each segment, specifying how long the target will spend on that
segment. Stationary segmernts are allowed; i.e. consecutive stored vertices at the same ground coordinates. With
each path segment we associate a rotation from target to ground coordinates. For stationary segments, this rotation
is specified in the path file; for other segments it is computed so as to orient the target in the direction of the path
segment, with the vertical axis of the target oriented either normal to the ground triangle on which that segment lies,
for ground targets, or simply in the “up” direction of the ground coordinate system, for aerial targets. These
rotations are initially computed as 3 x 3 matrices, and are then converted to quaternions, which allows us to
interpolate between them. Thus at initialization, we compute and store a quaternion for each path vertex,
incorporating the direction from that vertex to the next.

To interpolate orientations during the simulation, we use a function prototyped as

void MaInterpolateQuaternion (Quaternion *gl, Quaternion *q2, double t,

Quaternion *q)
Inputs to this function are quaternions g1 and g2 and a parameter t; the output quaternion q will equal g1 whent=
0, it will equal g2 when t =1, and it will take an intermediate value when t lies between 0 and 1. Within an iteration
of the simulation, each target’s orientation is updated as follows. The current time (in milliseconds from simulation
startup) is stored as tc. From this time, and the segment times associated with each path segment, a current vertex
is determined, such that the target is within the path segment starting at current vertex and proceeding toward the
next vertex. The time it reached the current vertex is stored as ts, which we refer to as the vertex start time. These
times satisfy the relation
ts € tc < ts + seg_time,

where seg_time is the time assigned to the current segment.

During an interval of time extending before and after a target reaches a given vertex, the target’s orientation
is interpolated between the precomputed orientations associated with the preceding and following segments. We
have arbitrarily defined that interval to extend from one second before to one second after the vertex start time,

unless either segment is less than two seconds long, in which case the interval to that side of the vertex is reduced to




half the segment time. Thus we compute the time interval t i over which interpolation will occur for the current
segment as
ti = 1000;
if (ti > seg time / 2)
ti = seg_time / 2;
Now, if tc < ts + ti,then the target is in the initial portion of the current segment, where its orientation is
interpolated from the orientations gl and g2 of the preceding and current segments. Parameter t is computed as
t = 0.5+ (tec - ts)/(2*ti);
Thus when tc = t s, which is when the target has just reached the current vertex, t = 0.5, resulting in a{n orientation
exactly halfway between those associated with the segments to either side of that vertex. In the case
tc > ts + vert->seg time - ti,the targetis in the tail end of the current segment, where its orientation
is interpolated from the orientations gl and g2 of the current and following segments. Parameter t is computed as
t = (tc - (ts + seg time - ti))/(2*ti);
When tc=ts + seg_time, which is when the target will reach the next vertex, the formula again gives t=0.5.
For values of tc between ts + tiand ts + seg time - ti,the quaternion associated with the current
segment is used without interpolation, the orientation being left unchanged during that middle portion of the
segment.
| An exception is made to the computations above in the case of a stationary segment, where the ground
position is the same at two successive vertices. The orientation is allowed to change during such a segment (as for a
tank rotating in place); in this case the stored orientations are treated as those desired at the two vertices (i.e.
endpoints of the time interval during which the rotation takes place). In this case, gl and g2 are assigned to be the
quaternions stored with those two vertices, and t is computed as
t = (tc - ts)/seg_time;

The interpolation thus occurs throughout the path segment, and ti is not used in the computations.




